Вторник, 07.07.2020, 11:57
Приветствую Вас Гость | RSS

Физика оптика

Счетчик визитов
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

ДИФРАКЦИЯ МЕХАНИЧЕСКИХ ВОЛН

ДИФРАКЦИЯ МЕХАНИЧЕСКИХ ВОЛН

     Часто волна встречает на своем пути небольшие (по сравнению с ее длиной) препятствия. Соотношение между длиной волны и размером препятствий определяет в основном поведение волны.

     Волны способны огибать края препятствий. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Так, морские волны свободно огибают выступающий из воды камень, если его размеры меньше длины волны или сравнимы с ней. За камнем волны распространяются так, как если бы его не было совсем (маленькие камни на рис. 26). Точно так же волна от брошенного в пруд камня огибает торчащий из воды прутик. Только за препятствием большого по сравнению с длиной волны размера (большой камень на рис. 26) образуется «тень»: волны за него не проникают.

  

Рис. 26

     Способностью огибать препятствия обладают и звуковые волны. Вы можете слышать сигнал машины за углом дома, когда самой машины не видно. В лесу деревья заслоняют ваших товарищей. Чтобы их не потерять, вы начинаете кричать. Звуковые волны в отличие от света свободно огибают стволы деревьев и доносят ваш голос до товарищей.

     Отклонение от прямолинейного распространения волн, огибание волнами препятствий, называется дифракцией. Дифракция присуща любому волновому процессу в той же мере, как и интерференция. При дифракции происходит искривление волновых поверхностей у краев препятствий.

     Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.

     Явление дифракции волн на поверхности воды можно наблюдать, если поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны (рис. 27). Хорошо будет видно, что за экраном распространяется круговая волна, как если бы в отверстии экрана располагалось колеблющееся тело — источник волн. Согласно принципу Гюйгенса так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.

  

Рис. 27

     Если размеры щели велики по сравнению с длиной волны, то картина распространения волн за экраном совершенно иная (рис. 28). Волна проходит сквозь щель, почти не меняя своей формы. Только по краям можно заметить небольшие искривления волновой поверхности, благодаря которым волна частично проникает и в пространство за экраном.

  

Рис. 28

Принцип Гюйгенса позволяет понять, почему происходит дифракция. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

Поиск

Copyright MyCorp © 2020
Создать бесплатный сайт с uCoz